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There's Plenty of Room at the Bottom 
An Invitation to Enter a New Field of Physics 

  by Richard P. Feynman 

 
I imagine experimental physicists must often look with envy at men like Kamerlingh 
Onnes, who discovered a field like low temperature, which seems to be bottomless and in 
which one can go down and down. Such a man is then a leader and has some temporary 
monopoly in a scientific adventure. Percy Bridgman, in designing a way to obtain higher 
pressures, opened up another new field and was able to move into it and to lead us all 
along. The development of ever higher vacuum was a continuing development of the 
same kind.  

I would like to describe a field, in which little has been done, but in which an enormous 
amount can be done in principle. This field is not quite the same as the others in that it 
will not tell us much of fundamental physics (in the sense of, ``What are the strange 
particles?'') but it is more like solid-state physics in the sense that it might tell us much of 
great interest about the strange phenomena that occur in complex situations. Furthermore, 
a point that is most important is that it would have an enormous number of technical 
applications.  

What I want to talk about is the problem of manipulating and controlling things on a 
small scale.  

As soon as I mention this, people tell me about miniaturization, and how far it has 
progressed today. They tell me about electric motors that are the size of the nail on your 
small finger. And there is a device on the market, they tell me, by which you can write 
the Lord's Prayer on the head of a pin. But that's nothing; that's the most primitive, 
halting step in the direction I intend to discuss. It is a staggeringly small world that is 
below. In the year 2000, when they look back at this age, they will wonder why it was not 
until the year 1960 that anybody began seriously to move in this direction.  

Why cannot we write the entire 24 volumes of the Encyclopedia Brittanica on the head of 
a pin?  

Let's see what would be involved. The head of a pin is a sixteenth of an inch across. If 
you magnify it by 25,000 diameters, the area of the head of the pin is then equal to the 
area of all the pages of the Encyclopaedia Brittanica. Therefore, all it is necessary to do is 
to reduce in size all the writing in the Encyclopaedia by 25,000 times. Is that possible? 
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The resolving power of the eye is about 1/120 of an inch---that is roughly the diameter of 
one of the little dots on the fine half-tone reproductions in the Encyclopaedia. This, when 
you demagnify it by 25,000 times, is still 80 angstroms in diameter---32 atoms across, in 
an ordinary metal. In other words, one of those dots still would contain in its area 1,000 
atoms. So, each dot can easily be adjusted in size as required by the photoengraving, and 
there is no question that there is enough room on the head of a pin to put all of the 
Encyclopaedia Brittanica.  

Furthermore, it can be read if it is so written. Let's imagine that it is written in raised 
letters of metal; that is, where the black is in the Encyclopedia, we have raised letters of 
metal that are actually 1/25,000 of their ordinary size. How would we read it?  

If we had something written in such a way, we could read it using techniques in common 
use today. (They will undoubtedly find a better way when we do actually have it written, 
but to make my point conservatively I shall just take techniques we know today.) We 
would press the metal into a plastic material and make a mold of it, then peel the plastic 
off very carefully, evaporate silica into the plastic to get a very thin film, then shadow it 
by evaporating gold at an angle against the silica so that all the little letters will appear 
clearly, dissolve the plastic away from the silica film, and then look through it with an 
electron microscope!  

There is no question that if the thing were reduced by 25,000 times in the form of raised 
letters on the pin, it would be easy for us to read it today. Furthermore; there is no 
question that we would find it easy to make copies of the master; we would just need to 
press the same metal plate again into plastic and we would have another copy.  

How do we write small? 

The next question is: How do we write it? We have no standard technique to do this now. 
But let me argue that it is not as difficult as it first appears to be. We can reverse the 
lenses of the electron microscope in order to demagnify as well as magnify. A source of 
ions, sent through the microscope lenses in reverse, could be focused to a very small spot. 
We could write with that spot like we write in a TV cathode ray oscilloscope, by going 
across in lines, and having an adjustment which determines the amount of material which 
is going to be deposited as we scan in lines.  

This method might be very slow because of space charge limitations. There will be more 
rapid methods. We could first make, perhaps by some photo process, a screen which has 
holes in it in the form of the letters. Then we would strike an arc behind the holes and 
draw metallic ions through the holes; then we could again use our system of lenses and 
make a small image in the form of ions, which would deposit the metal on the pin.  

A simpler way might be this (though I am not sure it would work): We take light and, 
through an optical microscope running backwards, we focus it onto a very small 
photoelectric screen. Then electrons come away from the screen where the light is 
shining. These electrons are focused down in size by the electron microscope lenses to 
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impinge directly upon the surface of the metal. Will such a beam etch away the metal if it 
is run long enough? I don't know. If it doesn't work for a metal surface, it must be 
possible to find some surface with which to coat the original pin so that, where the 
electrons bombard, a change is made which we could recognize later.  

There is no intensity problem in these devices---not what you are used to in 
magnification, where you have to take a few electrons and spread them over a bigger and 
bigger screen; it is just the opposite. The light which we get from a page is concentrated 
onto a very small area so it is very intense. The few electrons which come from the 
photoelectric screen are demagnified down to a very tiny area so that, again, they are very 
intense. I don't know why this hasn't been done yet!  

That's the Encyclopaedia Brittanica on the head of a pin, but let's consider all the books in 
the world. The Library of Congress has approximately 9 million volumes; the British 
Museum Library has 5 million volumes; there are also 5 million volumes in the National 
Library in France. Undoubtedly there are duplications, so let us say that there are some 
24 million volumes of interest in the world.  

What would happen if I print all this down at the scale we have been discussing? How 
much space would it take? It would take, of course, the area of about a million pinheads 
because, instead of there being just the 24 volumes of the Encyclopaedia, there are 24 
million volumes. The million pinheads can be put in a square of a thousand pins on a 
side, or an area of about 3 square yards. That is to say, the silica replica with the paper-
thin backing of plastic, with which we have made the copies, with all this information, is 
on an area of approximately the size of 35 pages of the Encyclopaedia. That is about half 
as many pages as there are in this magazine. All of the information which all of mankind 
has every recorded in books can be carried around in a pamphlet in your hand---and not 
written in code, but a simple reproduction of the original pictures, engravings, and 
everything else on a small scale without loss of resolution.  

What would our librarian at Caltech say, as she runs all over from one building to 
another, if I tell her that, ten years from now, all of the information that she is struggling 
to keep track of--- 120,000 volumes, stacked from the floor to the ceiling, drawers full of 
cards, storage rooms full of the older books---can be kept on just one library card! When 
the University of Brazil, for example, finds that their library is burned, we can send them 
a copy of every book in our library by striking off a copy from the master plate in a few 
hours and mailing it in an envelope no bigger or heavier than any other ordinary air mail 
letter.  

Now, the name of this talk is ``There is Plenty of Room at the Bottom''---not just ``There 
is Room at the Bottom.'' What I have demonstrated is that there is room---that you can 
decrease the size of things in a practical way. I now want to show that there is plenty of 
room. I will not now discuss how we are going to do it, but only what is possible in 
principle---in other words, what is possible according to the laws of physics. I am not 
inventing anti-gravity, which is possible someday only if the laws are not what we think. 
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I am telling you what could be done if the laws are what we think; we are not doing it 
simply because we haven't yet gotten around to it.  

Information on a small scale 

Suppose that, instead of trying to reproduce the pictures and all the information directly 
in its present form, we write only the information content in a code of dots and dashes, or 
something like that, to represent the various letters. Each letter represents six or seven 
``bits'' of information; that is, you need only about six or seven dots or dashes for each 
letter. Now, instead of writing everything, as I did before, on the surface of the head of a 
pin, I am going to use the interior of the material as well.  

Let us represent a dot by a small spot of one metal, the next dash, by an adjacent spot of 
another metal, and so on. Suppose, to be conservative, that a bit of information is going to 
require a little cube of atoms 5 times 5 times 5---that is 125 atoms. Perhaps we need a 
hundred and some odd atoms to make sure that the information is not lost through 
diffusion, or through some other process.  

I have estimated how many letters there are in the Encyclopaedia, and I have assumed 
that each of my 24 million books is as big as an Encyclopaedia volume, and have 
calculated, then, how many bits of information there are (10^15). For each bit I allow 100 
atoms. And it turns out that all of the information that man has carefully accumulated in 
all the books in the world can be written in this form in a cube of material one two-
hundredth of an inch wide--- which is the barest piece of dust that can be made out by the 
human eye. So there is plenty of room at the bottom! Don't tell me about microfilm!  

This fact---that enormous amounts of information can be carried in an exceedingly small 
space---is, of course, well known to the biologists, and resolves the mystery which 
existed before we understood all this clearly, of how it could be that, in the tiniest cell, all 
of the information for the organization of a complex creature such as ourselves can be 
stored. All this information---whether we have brown eyes, or whether we think at all, or 
that in the embryo the jawbone should first develop with a little hole in the side so that 
later a nerve can grow through it---all this information is contained in a very tiny fraction 
of the cell in the form of long-chain DNA molecules in which approximately 50 atoms 
are used for one bit of information about the cell.  

Better electron microscopes 

If I have written in a code, with 5 times 5 times 5 atoms to a bit, the question is: How 
could I read it today? The electron microscope is not quite good enough, with the greatest 
care and effort, it can only resolve about 10 angstroms. I would like to try and impress 
upon you while I am talking about all of these things on a small scale, the importance of 
improving the electron microscope by a hundred times. It is not impossible; it is not 
against the laws of diffraction of the electron. The wave length of the electron in such a 
microscope is only 1/20 of an angstrom. So it should be possible to see the individual 
atoms. What good would it be to see individual atoms distinctly?  
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We have friends in other fields---in biology, for instance. We physicists often look at 
them and say, ``You know the reason you fellows are making so little progress?'' 
(Actually I don't know any field where they are making more rapid progress than they are 
in biology today.) ``You should use more mathematics, like we do.'' They could answer 
us---but they're polite, so I'll answer for them: ``What you should do in order for us to 
make more rapid progress is to make the electron microscope 100 times better.''  

What are the most central and fundamental problems of biology today? They are 
questions like: What is the sequence of bases in the DNA? What happens when you have 
a mutation? How is the base order in the DNA connected to the order of amino acids in 
the protein? What is the structure of the RNA; is it single-chain or double-chain, and how 
is it related in its order of bases to the DNA? What is the organization of the 
microsomes? How are proteins synthesized? Where does the RNA go? How does it sit? 
Where do the proteins sit? Where do the amino acids go in? In photosynthesis, where is 
the chlorophyll; how is it arranged; where are the carotenoids involved in this thing? 
What is the system of the conversion of light into chemical energy?  

It is very easy to answer many of these fundamental biological questions; you just look at 
the thing! You will see the order of bases in the chain; you will see the structure of the 
microsome. Unfortunately, the present microscope sees at a scale which is just a bit too 
crude. Make the microscope one hundred times more powerful, and many problems of 
biology would be made very much easier. I exaggerate, of course, but the biologists 
would surely be very thankful to you---and they would prefer that to the criticism that 
they should use more mathematics.  

The theory of chemical processes today is based on theoretical physics. In this sense, 
physics supplies the foundation of chemistry. But chemistry also has analysis. If you have 
a strange substance and you want to know what it is, you go through a long and 
complicated process of chemical analysis. You can analyze almost anything today, so I 
am a little late with my idea. But if the physicists wanted to, they could also dig under the 
chemists in the problem of chemical analysis. It would be very easy to make an analysis 
of any complicated chemical substance; all one would have to do would be to look at it 
and see where the atoms are. The only trouble is that the electron microscope is one 
hundred times too poor. (Later, I would like to ask the question: Can the physicists do 
something about the third problem of chemistry---namely, synthesis? Is there a physical 
way to synthesize any chemical substance?  

The reason the electron microscope is so poor is that the f- value of the lenses is only 1 
part to 1,000; you don't have a big enough numerical aperture. And I know that there are 
theorems which prove that it is impossible, with axially symmetrical stationary field 
lenses, to produce an f-value any bigger than so and so; and therefore the resolving power 
at the present time is at its theoretical maximum. But in every theorem there are 
assumptions. Why must the field be symmetrical? I put this out as a challenge: Is there no 
way to make the electron microscope more powerful?  

The marvelous biological system 
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The biological example of writing information on a small scale has inspired me to think 
of something that should be possible. Biology is not simply writing information; it is 
doing something about it. A biological system can be exceedingly small. Many of the 
cells are very tiny, but they are very active; they manufacture various substances; they 
walk around; they wiggle; and they do all kinds of marvelous things---all on a very small 
scale. Also, they store information. Consider the possibility that we too can make a thing 
very small which does what we want---that we can manufacture an object that maneuvers 
at that level!  

There may even be an economic point to this business of making things very small. Let 
me remind you of some of the problems of computing machines. In computers we have to 
store an enormous amount of information. The kind of writing that I was mentioning 
before, in which I had everything down as a distribution of metal, is permanent. Much 
more interesting to a computer is a way of writing, erasing, and writing something else. 
(This is usually because we don't want to waste the material on which we have just 
written. Yet if we could write it in a very small space, it wouldn't make any difference; it 
could just be thrown away after it was read. It doesn't cost very much for the material).  

Miniaturizing the computer 

I don't know how to do this on a small scale in a practical way, but I do know that 
computing machines are very large; they fill rooms. Why can't we make them very small, 
make them of little wires, little elements---and by little, I mean little. For instance, the 
wires should be 10 or 100 atoms in diameter, and the circuits should be a few thousand 
angstroms across. Everybody who has analyzed the logical theory of computers has come 
to the conclusion that the possibilities of computers are very interesting---if they could be 
made to be more complicated by several orders of magnitude. If they had millions of 
times as many elements, they could make judgments. They would have time to calculate 
what is the best way to make the calculation that they are about to make. They could 
select the method of analysis which, from their experience, is better than the one that we 
would give to them. And in many other ways, they would have new qualitative features.  

If I look at your face I immediately recognize that I have seen it before. (Actually, my 
friends will say I have chosen an unfortunate example here for the subject of this 
illustration. At least I recognize that it is a man and not an apple.) Yet there is no machine 
which, with that speed, can take a picture of a face and say even that it is a man; and 
much less that it is the same man that you showed it before---unless it is exactly the same 
picture. If the face is changed; if I am closer to the face; if I am further from the face; if 
the light changes---I recognize it anyway. Now, this little computer I carry in my head is 
easily able to do that. The computers that we build are not able to do that. The number of 
elements in this bone box of mine are enormously greater than the number of elements in 
our ``wonderful'' computers. But our mechanical computers are too big; the elements in 
this box are microscopic. I want to make some that are submicroscopic.  

If we wanted to make a computer that had all these marvelous extra qualitative abilities, 
we would have to make it, perhaps, the size of the Pentagon. This has several 
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disadvantages. First, it requires too much material; there may not be enough germanium 
in the world for all the transistors which would have to be put into this enormous thing. 
There is also the problem of heat generation and power consumption; TVA would be 
needed to run the computer. But an even more practical difficulty is that the computer 
would be limited to a certain speed. Because of its large size, there is finite time required 
to get the information from one place to another. The information cannot go any faster 
than the speed of light---so, ultimately, when our computers get faster and faster and 
more and more elaborate, we will have to make them smaller and smaller.  

But there is plenty of room to make them smaller. There is nothing that I can see in the 
physical laws that says the computer elements cannot be made enormously smaller than 
they are now. In fact, there may be certain advantages.  

Miniaturization by evaporation 

How can we make such a device? What kind of manufacturing processes would we use? 
One possibility we might consider, since we have talked about writing by putting atoms 
down in a certain arrangement, would be to evaporate the material, then evaporate the 
insulator next to it. Then, for the next layer, evaporate another position of a wire, another 
insulator, and so on. So, you simply evaporate until you have a block of stuff which has 
the elements--- coils and condensers, transistors and so on---of exceedingly fine 
dimensions.  

But I would like to discuss, just for amusement, that there are other possibilities. Why 
can't we manufacture these small computers somewhat like we manufacture the big ones? 
Why can't we drill holes, cut things, solder things, stamp things out, mold different 
shapes all at an infinitesimal level? What are the limitations as to how small a thing has 
to be before you can no longer mold it? How many times when you are working on 
something frustratingly tiny like your wife's wrist watch, have you said to yourself, ``If I 
could only train an ant to do this!'' What I would like to suggest is the possibility of 
training an ant to train a mite to do this. What are the possibilities of small but movable 
machines? They may or may not be useful, but they surely would be fun to make.  

Consider any machine---for example, an automobile---and ask about the problems of 
making an infinitesimal machine like it. Suppose, in the particular design of the 
automobile, we need a certain precision of the parts; we need an accuracy, let's suppose, 
of 4/10,000 of an inch. If things are more inaccurate than that in the shape of the cylinder 
and so on, it isn't going to work very well. If I make the thing too small, I have to worry 
about the size of the atoms; I can't make a circle of ``balls'' so to speak, if the circle is too 
small. So, if I make the error, corresponding to 4/10,000 of an inch, correspond to an 
error of 10 atoms, it turns out that I can reduce the dimensions of an automobile 4,000 
times, approximately---so that it is 1 mm. across. Obviously, if you redesign the car so 
that it would work with a much larger tolerance, which is not at all impossible, then you 
could make a much smaller device.  
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It is interesting to consider what the problems are in such small machines. Firstly, with 
parts stressed to the same degree, the forces go as the area you are reducing, so that 
things like weight and inertia are of relatively no importance. The strength of material, in 
other words, is very much greater in proportion. The stresses and expansion of the 
flywheel from centrifugal force, for example, would be the same proportion only if the 
rotational speed is increased in the same proportion as we decrease the size. On the other 
hand, the metals that we use have a grain structure, and this would be very annoying at 
small scale because the material is not homogeneous. Plastics and glass and things of this 
amorphous nature are very much more homogeneous, and so we would have to make our 
machines out of such materials.  

There are problems associated with the electrical part of the system---with the copper 
wires and the magnetic parts. The magnetic properties on a very small scale are not the 
same as on a large scale; there is the ``domain'' problem involved. A big magnet made of 
millions of domains can only be made on a small scale with one domain. The electrical 
equipment won't simply be scaled down; it has to be redesigned. But I can see no reason 
why it can't be redesigned to work again.  

Problems of lubrication 

Lubrication involves some interesting points. The effective viscosity of oil would be 
higher and higher in proportion as we went down (and if we increase the speed as much 
as we can). If we don't increase the speed so much, and change from oil to kerosene or 
some other fluid, the problem is not so bad. But actually we may not have to lubricate at 
all! We have a lot of extra force. Let the bearings run dry; they won't run hot because the 
heat escapes away from such a small device very, very rapidly.  

This rapid heat loss would prevent the gasoline from exploding, so an internal 
combustion engine is impossible. Other chemical reactions, liberating energy when cold, 
can be used. Probably an external supply of electrical power would be most convenient 
for such small machines.  

What would be the utility of such machines? Who knows? Of course, a small automobile 
would only be useful for the mites to drive around in, and I suppose our Christian 
interests don't go that far. However, we did note the possibility of the manufacture of 
small elements for computers in completely automatic factories, containing lathes and 
other machine tools at the very small level. The small lathe would not have to be exactly 
like our big lathe. I leave to your imagination the improvement of the design to take full 
advantage of the properties of things on a small scale, and in such a way that the fully 
automatic aspect would be easiest to manage.  

A friend of mine (Albert R. Hibbs) suggests a very interesting possibility for relatively 
small machines. He says that, although it is a very wild idea, it would be interesting in 
surgery if you could swallow the surgeon. You put the mechanical surgeon inside the 
blood vessel and it goes into the heart and ``looks'' around. (Of course the information 
has to be fed out.) It finds out which valve is the faulty one and takes a little knife and 
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slices it out. Other small machines might be permanently incorporated in the body to 
assist some inadequately-functioning organ.  

Now comes the interesting question: How do we make such a tiny mechanism? I leave 
that to you. However, let me suggest one weird possibility. You know, in the atomic 
energy plants they have materials and machines that they can't handle directly because 
they have become radioactive. To unscrew nuts and put on bolts and so on, they have a 
set of master and slave hands, so that by operating a set of levers here, you control the 
``hands'' there, and can turn them this way and that so you can handle things quite nicely.  

Most of these devices are actually made rather simply, in that there is a particular cable, 
like a marionette string, that goes directly from the controls to the ``hands.'' But, of 
course, things also have been made using servo motors, so that the connection between 
the one thing and the other is electrical rather than mechanical. When you turn the levers, 
they turn a servo motor, and it changes the electrical currents in the wires, which 
repositions a motor at the other end.  

Now, I want to build much the same device---a master-slave system which operates 
electrically. But I want the slaves to be made especially carefully by modern large-scale 
machinists so that they are one-fourth the scale of the ``hands'' that you ordinarily 
maneuver. So you have a scheme by which you can do things at one- quarter scale 
anyway---the little servo motors with little hands play with little nuts and bolts; they drill 
little holes; they are four times smaller. Aha! So I manufacture a quarter-size lathe; I 
manufacture quarter-size tools; and I make, at the one-quarter scale, still another set of 
hands again relatively one-quarter size! This is one-sixteenth size, from my point of view. 
And after I finish doing this I wire directly from my large-scale system, through 
transformers perhaps, to the one-sixteenth-size servo motors. Thus I can now manipulate 
the one-sixteenth size hands.  

Well, you get the principle from there on. It is rather a difficult program, but it is a 
possibility. You might say that one can go much farther in one step than from one to four. 
Of course, this has all to be designed very carefully and it is not necessary simply to 
make it like hands. If you thought of it very carefully, you could probably arrive at a 
much better system for doing such things.  

If you work through a pantograph, even today, you can get much more than a factor of 
four in even one step. But you can't work directly through a pantograph which makes a 
smaller pantograph which then makes a smaller pantograph---because of the looseness of 
the holes and the irregularities of construction. The end of the pantograph wiggles with a 
relatively greater irregularity than the irregularity with which you move your hands. In 
going down this scale, I would find the end of the pantograph on the end of the 
pantograph on the end of the pantograph shaking so badly that it wasn't doing anything 
sensible at all.  

At each stage, it is necessary to improve the precision of the apparatus. If, for instance, 
having made a small lathe with a pantograph, we find its lead screw irregular---more 



©1960 California Institute of Technology 
First published in Engineering and Science magazine, vol. XXIII, no. 5, February 1960. 

irregular than the large-scale one---we could lap the lead screw against breakable nuts 
that you can reverse in the usual way back and forth until this lead screw is, at its scale, 
as accurate as our original lead screws, at our scale.  

We can make flats by rubbing unflat surfaces in triplicates together---in three pairs---and 
the flats then become flatter than the thing you started with. Thus, it is not impossible to 
improve precision on a small scale by the correct operations. So, when we build this stuff, 
it is necessary at each step to improve the accuracy of the equipment by working for 
awhile down there, making accurate lead screws, Johansen blocks, and all the other 
materials which we use in accurate machine work at the higher level. We have to stop at 
each level and manufacture all the stuff to go to the next level---a very long and very 
difficult program. Perhaps you can figure a better way than that to get down to small 
scale more rapidly.  

Yet, after all this, you have just got one little baby lathe four thousand times smaller than 
usual. But we were thinking of making an enormous computer, which we were going to 
build by drilling holes on this lathe to make little washers for the computer. How many 
washers can you manufacture on this one lathe?  

A hundred tiny hands 

When I make my first set of slave ``hands'' at one-fourth scale, I am going to make ten 
sets. I make ten sets of ``hands,'' and I wire them to my original levers so they each do 
exactly the same thing at the same time in parallel. Now, when I am making my new 
devices one-quarter again as small, I let each one manufacture ten copies, so that I would 
have a hundred ``hands'' at the 1/16th size.  

Where am I going to put the million lathes that I am going to have? Why, there is nothing 
to it; the volume is much less than that of even one full-scale lathe. For instance, if I 
made a billion little lathes, each 1/4000 of the scale of a regular lathe, there are plenty of 
materials and space available because in the billion little ones there is less than 2 percent 
of the materials in one big lathe.  

It doesn't cost anything for materials, you see. So I want to build a billion tiny factories, 
models of each other, which are manufacturing simultaneously, drilling holes, stamping 
parts, and so on.  

As we go down in size, there are a number of interesting problems that arise. All things 
do not simply scale down in proportion. There is the problem that materials stick together 
by the molecular (Van der Waals) attractions. It would be like this: After you have made 
a part and you unscrew the nut from a bolt, it isn't going to fall down because the gravity 
isn't appreciable; it would even be hard to get it off the bolt. It would be like those old 
movies of a man with his hands full of molasses, trying to get rid of a glass of water. 
There will be several problems of this nature that we will have to be ready to design for.  

Rearranging the atoms 
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But I am not afraid to consider the final question as to whether, ultimately---in the great 
future---we can arrange the atoms the way we want; the very atoms, all the way down! 
What would happen if we could arrange the atoms one by one the way we want them 
(within reason, of course; you can't put them so that they are chemically unstable, for 
example).  

Up to now, we have been content to dig in the ground to find minerals. We heat them and 
we do things on a large scale with them, and we hope to get a pure substance with just so 
much impurity, and so on. But we must always accept some atomic arrangement that 
nature gives us. We haven't got anything, say, with a ``checkerboard'' arrangement, with 
the impurity atoms exactly arranged 1,000 angstroms apart, or in some other particular 
pattern.  

What could we do with layered structures with just the right layers? What would the 
properties of materials be if we could really arrange the atoms the way we want them? 
They would be very interesting to investigate theoretically. I can't see exactly what would 
happen, but I can hardly doubt that when we have some control of the arrangement of 
things on a small scale we will get an enormously greater range of possible properties 
that substances can have, and of different things that we can do.  

Consider, for example, a piece of material in which we make little coils and condensers 
(or their solid state analogs) 1,000 or 10,000 angstroms in a circuit, one right next to the 
other, over a large area, with little antennas sticking out at the other end---a whole series 
of circuits. Is it possible, for example, to emit light from a whole set of antennas, like we 
emit radio waves from an organized set of antennas to beam the radio programs to 
Europe? The same thing would be to beam the light out in a definite direction with very 
high intensity. (Perhaps such a beam is not very useful technically or economically.)  

I have thought about some of the problems of building electric circuits on a small scale, 
and the problem of resistance is serious. If you build a corresponding circuit on a small 
scale, its natural frequency goes up, since the wave length goes down as the scale; but the 
skin depth only decreases with the square root of the scale ratio, and so resistive problems 
are of increasing difficulty. Possibly we can beat resistance through the use of 
superconductivity if the frequency is not too high, or by other tricks.  

Atoms in a small world 

When we get to the very, very small world---say circuits of seven atoms---we have a lot 
of new things that would happen that represent completely new opportunities for design. 
Atoms on a small scale behave like nothing on a large scale, for they satisfy the laws of 
quantum mechanics. So, as we go down and fiddle around with the atoms down there, we 
are working with different laws, and we can expect to do different things. We can 
manufacture in different ways. We can use, not just circuits, but some system involving 
the quantized energy levels, or the interactions of quantized spins, etc.  
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Another thing we will notice is that, if we go down far enough, all of our devices can be 
mass produced so that they are absolutely perfect copies of one another. We cannot build 
two large machines so that the dimensions are exactly the same. But if your machine is 
only 100 atoms high, you only have to get it correct to one-half of one percent to make 
sure the other machine is exactly the same size---namely, 100 atoms high!  

At the atomic level, we have new kinds of forces and new kinds of possibilities, new 
kinds of effects. The problems of manufacture and reproduction of materials will be quite 
different. I am, as I said, inspired by the biological phenomena in which chemical forces 
are used in repetitious fashion to produce all kinds of weird effects (one of which is the 
author).  

The principles of physics, as far as I can see, do not speak against the possibility of 
maneuvering things atom by atom. It is not an attempt to violate any laws; it is 
something, in principle, that can be done; but in practice, it has not been done because we 
are too big.  

Ultimately, we can do chemical synthesis. A chemist comes to us and says, ``Look, I 
want a molecule that has the atoms arranged thus and so; make me that molecule.'' The 
chemist does a mysterious thing when he wants to make a molecule. He sees that it has 
got that ring, so he mixes this and that, and he shakes it, and he fiddles around. And, at 
the end of a difficult process, he usually does succeed in synthesizing what he wants. By 
the time I get my devices working, so that we can do it by physics, he will have figured 
out how to synthesize absolutely anything, so that this will really be useless.  

But it is interesting that it would be, in principle, possible (I think) for a physicist to 
synthesize any chemical substance that the chemist writes down. Give the orders and the 
physicist synthesizes it. How? Put the atoms down where the chemist says, and so you 
make the substance. The problems of chemistry and biology can be greatly helped if our 
ability to see what we are doing, and to do things on an atomic level, is ultimately 
developed---a development which I think cannot be avoided.  

Now, you might say, ``Who should do this and why should they do it?'' Well, I pointed 
out a few of the economic applications, but I know that the reason that you would do it 
might be just for fun. But have some fun! Let's have a competition between laboratories. 
Let one laboratory make a tiny motor which it sends to another lab which sends it back 
with a thing that fits inside the shaft of the first motor.  

High school competition 

Just for the fun of it, and in order to get kids interested in this field, I would propose that 
someone who has some contact with the high schools think of making some kind of high 
school competition. After all, we haven't even started in this field, and even the kids can 
write smaller than has ever been written before. They could have competition in high 
schools. The Los Angeles high school could send a pin to the Venice high school on 
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which it says, ``How's this?'' They get the pin back, and in the dot of the ``i'' it says, ``Not 
so hot.''  

Perhaps this doesn't excite you to do it, and only economics will do so. Then I want to do 
something; but I can't do it at the present moment, because I haven't prepared the ground. 
It is my intention to offer a prize of $1,000 to the first guy who can take the information 
on the page of a book and put it on an area 1/25,000 smaller in linear scale in such 
manner that it can be read by an electron microscope.  

And I want to offer another prize---if I can figure out how to phrase it so that I don't get 
into a mess of arguments about definitions---of another $1,000 to the first guy who makes 
an operating electric motor---a rotating electric motor which can be controlled from the 
outside and, not counting the lead-in wires, is only 1/64 inch cube.  

I do not expect that such prizes will have to wait very long for claimants.  


