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Introduction
Lock-in amplifiers were invented in the 1930’s [1, 2, 3]
and commercialized [4] in the mid 20th century as
electrical instruments capable of extracting signal am-
plitudes and phases in extremely noisy environments
(see Figure 1). They employ a homodyne detection
scheme and low-pass filtering to measure a signal’s
amplitude and phase relative to a periodic reference.
A lock-in measurement extracts signals in a defined
frequency band around the reference frequency, effi-
ciently rejecting all other frequency components. The
best instruments on the market today have a dynamic
reserve of 120 dB [5], whichmeans they are capable of
accuratelymeasuring a signal in the presence of noise
up to a million times higher in amplitude than the sig-
nal of interest.
Over decades of development, researchers have found
many different ways to use lock-in amplifiers. Most
prominently they are used as precision AC voltage
and AC phase meters, noise measurement units,
impedance spectroscopes, network analyzers, spec-
trum analyzers and phase detectors in phase-locked
loops. The fields of research comprise almost every
length scale and temperature, such as the observa-
tion of the corona in full sunlight [6], measuring the
fractional quantumHall effect [7], or direct imaging of
the bond characteristics between atoms in amolecule
[8]. Lock-in amplifiers are extremely versatile. As es-
sential as spectrum analyzers and oscilloscopes, they
are workhorses in all kinds of laboratory setups, from
physics to engineering and life sciences. As with most
powerful tools, only a solid understanding of the work-
ing principles and features enables the user to get the
most out of it and to successfully design experiments.

This document provides a quick introduction to the
principles of lock-in amplification and explains the
most important measurement settings. The lock-in
detection technique is described both in the time and
in the frequency domain. Moreover, details are laid out

on how signal modulation can be exploited in order to
improve on signal-to-noise ratio (SNR) while keeping
acquisition time low. Finally, recent innovations are
discussed and the state of the art is described.

Lock-in amplifier working principle

Lock-in amplifiers use the knowledge about a signal’s
timedependence to extract it fromanoisy background.
A lock-in amplifier performs a multiplication of its in-
put with a reference signal, also sometimes called
down-mixing or heterodyne/homodyne detection, and
then applies an adjustable low-pass filter to the re-
sult. This method is termed demodulation or phase-
sensitive detection and isolates the signal at the fre-
quency of interest from all other frequency compo-
nents. The reference signal is either generated by the
lock-in amplifier itself or provided to the lock-in ampli-
fier and the experiment by an external source.
The reference signal is usually a sine wave but could
have other forms, too. Demodulation with a pure sine
wave enables selective measurement at the funda-
mental frequencyoranyof its harmonics. Some instru-
ments use a square wave [9] which also captures all
odd harmonics of the signal and, therefore, potentially
introducing systematic measurement errors.
To understand lock-in detection, we will look at both
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Figure 1. Lock-inamplifiersarecapableofmeasuring theamplitude
and the phase of a signal relative to a defined reference signal, even
if the signal is entirely buried in noise.
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Figure 2. (a) Sketch of a typical lock-in measurement. A sinu-
soidal signal drives the DUT and serves as a reference signal. The
response of the DUT is analyzed by the lock-in which outputs the
amplitude and phase of the signal relative to the reference signal.
(b) Schematic of the lock-in amplification: the input signal is multi-
plied by the reference signal and a 90◦ phase-shifted version of the
reference signal. The mixer outputs are low-pass filtered to reject
the noise and the 2ω component, and finally converted into polar
coordinates.

the timeand the frequencydomain, first formixingand
then for the filtering process.

Dual-phase demodulation

In a typical experiment, the device under test (DUT)
is stimulated by a sinusoidal signal, as shown in Fig-
ure 2 (a). The device response Vs(t) as well as the refer-
ence signal Vr(t) are used by the lock-in amplifier to de-
termine the amplitude R and phase ϴ. This is achieved
using a so-called dual-phase demodulation circuit, as
illustrated in Figure 2 (b). The input signal is split and
separately multiplied with the reference signal and a
90◦ phase-shifted copy of it. The outputs of the mix-
ers pass through configurable low-pass filters, result-
ing in the two outputs X and Y, termed the in-phase
and quadrature component. The amplitude R and the
phase ϴ are easily derived from X and Y by a transfor-
mation from Cartesian coordinates into polar coordi-
nates using the relation

R =
√

X2 + Y2,
ϴ = atan2 (Y,X). (1)

Note that in order to have an output range for the
phase angle that covers all four quadrants, i.e. (−π, π],
atan2 is used instead of atan.
Figure2 (b) shows that the lock-inamplifier has to split
up the input signal in order to demodulate it with two
different phases. Contrary to analog instruments, dig-
ital technology overcomes any losses in SNR and mis-
match between the channelswhen splitting the signal.

a cb
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Figure 3. Demodulation process represented in the complex plane.
(a) The input signal Vs(t) can be expressedas the sumof two counter-
rotating vectors. (b) The projections onto the x-axis add up whereas
the projections to the imaginary y-axis cancel each other out. (c) In
the rotating frame the counter-clockwise vector is standing still, the
clockwise moving vector rotates at twice the observer’s angular ve-
locity. Note that by convention, ϴ is positive if the counter-clockwise
vector is ahead of the reference.

Signal mixing in the time domain

Complex numbers provide an elegant mathematical
formalism to calculate the demodulation process. We
use the elementary trigonometric law

cos(x) =
1
2
e+ix +

1
2
e−ix (2)

to rewrite the input signal Vs(t) as the sum of two vec-
tors in the complex plane, each one of length R/

√
2 ro-

tating at the same speed ωs, one clockwise and the
other counter-clockwise:

Vs(t) =
√
2R · cos(ωst+ ϴ)

=
R√
2
e+i(ωst+ϴ) +

R√
2
e−i(ωst+ϴ). (3)

In thegraphical representationgiven inFigure3 (a) and
(b) one cansee that the vectors’ sumprojectedon the x-
axis– the real part – is exactly Vs(t), whereas the vector
sum projection onto the y-axis – the imaginary part –
is always zero.
The dual-phase down-mixing is mathematically ex-
pressed as amultiplication of the input signal with the
complex reference signal

Vr(t) =
√
2e−iωrt =

√
2 cos(ωrt)− i

√
2 sin(ωrt). (4)

The complex signal after mixing is given by

Z(t) = X(t) + iY(t) = Vs(t) · Vr(t)

= R
[
ei[(ωs−ωr)t+ϴ] + e−i[(ωs+ωr)t+ϴ]

]
, (5)

with signal components at the sum and the difference
of the signal frequency and the reference frequency. In
the picture of Figure 3 (c), the complex mixing is equiv-
alent to an observer located at the origin and rotating
in a counter-clockwise direction with frequency ωr.
In the eyes of this observer, the two arrows appear
to rotate at different angular velocities ωs −ωr and
ωs +ωr, with the arrow ωs +ωr rotating much faster
if the signal and reference frequencies are close.
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Figure 4. (a) An input signal Vs (red) with peak amplitude of 0.5 V is
multiplied with the reference signal Vr (blue) at the same frequency.
(b) The resulting signal has a DC offset and a frequency component
at twice the frequency of Vs and Vr. The DC value is 0.17 V, which is
the in-phase component X of the input signal. (c) The input signal
Vs is multiplied by a reference Vr at a different frequency. (d) The
resulting signal has frequencycomponentsat fs − fr and fs + fr. The
average signal is always zero.

The subsequent filtering is mathematically expressed
as an averaging of the moving vectors over time, in-
dicated by the angle brackets ⟨· · · ⟩. Filtering strips
away the fast rotating term at |ωs +ωr| by setting
⟨exp [−i (ωs +ωr) t+ iϴ]⟩ = 0. The averaged signal af-
ter demodulation becomes

Z(t) = R · ei[(ωs−ωr)t+ϴ]. (6)

In the case of equal frequencies ωs = ωr, this further
simplifies to

Z(t) = R · eiϴ. (7)

Equation 7 is the demodulated signal and the main
output of the lock-in amplifier: with the absolute value
|Z|=Rgivenas the root-mean-squareamplitudeof the
signal and its argument arg(Z) = ϴ given by the phase
of the input signal relative to the reference signal.
The real and imaginary parts of the demodulated sig-
nal Z(t) are the in-phase component X and the quadra-
ture component Y. They are obtained using Euler’s for-
mula exp(iωst) ≡ cos(ωst) + i sin(ωst) as:

X = Re(Z) = ⟨Vs(t) cos (ωst)⟩ = R cosϴ,
Y = Im(Z) = −⟨Vs(t) sin (ωst)⟩ = R sinϴ. (8)

In the graphical view, ωs = ωr means that the arrow ro-
tating counter-clockwisewill appear at rest. The other
arrow is rotating clockwise at twice the frequency, i.e.
−2ωs, and is often called the 2ω component. The low-
pass filter usually cancels out the 2ω component com-
pletely.
Figure 4 illustrates the different signals before and af-

ter mixing and filtering as they would appear on an os-
cilloscope. Figure 4 (a) shows the sinusoidal example
signals Vs and Vr over time having exactly the same
frequencies ωs and ωr. The signal after mixing, blue
trace in Figure 4 (b), is dominated by the 2ω compo-
nent. After filtering, green trace, only the DC compo-
nent remains, which is equal to the in-phase ampli-
tude X of Vs. If the signal frequency and the reference
frequency deviate, as shown in Figure 4 (c), the result-
ing signal after mixing is no longer a simple sine wave
and averages out to zero after filtering, as shown in
Figure 4 (d). It is the perfect example of synchronous
detection, which exclusively extracts signals coherent
with the reference frequency and discards all others.

Signal mixing in the frequency domain

To switch between the time domain and the frequency
domainpicture, weuse theFourier transform [10]. The
Fourier transform is linear and converts a sinusoidal
function with frequency f0 in the time domain into a
Dirac delta function δ(f-f0) in the frequency domain, i.e.
a single peak at frequency f0 in the spectrum. As any
periodic signal can be expressed as a superposition of
sines and cosines [11], transformations of signals con-
sisting of only a few spectral components can often be
intuitively understood.
Figure 5 (a) shows a noisy sinusoidal represented in
the time domain, which is then Fourier transformed
into the frequency domain in Figure 5 (b). The sinu-
soidal signal shows up as a peak both at +fs and at−fs
in the spectrum. The smaller peak at zero frequency is
caused by the input signal’s DC offset. The blue trace
in Figure 5 (c) represents the time domain signal after
mixing. The associated spectrum shown in Figure 5 (d)
is essentially a copy of the one in (b) shifted by the ref-
erence frequency fr towards lower frequencies.
Low-pass filtering is indicated as a dashed red trace
in (d) and selects the frequencies up to a certain fil-
ter bandwidth fBW. The output signal, red trace in (c),
is the DC component of the spectrum visualized in (d)
plus the noise contribution within the filter bandwidth
|f| < fBW. It is evident from this picture that a filter band-
width significantly smaller than the signal frequency fs
is required to efficiently suppress offsets in the input
signal. In the next sections, we’ll discuss further crite-
ria for choosingsuitable filter characteristics inagiven
experimental situation.

Low-pass filtering in the frequency domain

For the low-pass filtering we start by considering the
frequency domain because for most filters there is
a simple relationship between the incoming signal
Qin(ω) and the filtered signal Qout(ω) given by

Qout(ω) = H(ω)Qin(ω). (9)

H(ω) is called the transfer function of the filter. Qin(ω)
and Qout(ω) are the Fourier transforms of the time do-

Zurich Instruments – White Paper: Principles of lock-in detection and the state of the art Page 3



0 0.5 1 1.5 2
time (s)

–20 –10 0 10 20
frequency (Hz)

0 1 2 3 4
time (s)

–20 –10 0 10 20
frequency (Hz)

am
pl

it
ud

e 
(V

)

a 1

0.5

0

–0.5

–1

am
pl

it
ud

e 
(V

)

c 1

0.5

0

–0.5

–1

FF
T 

am
pl

it
ud

e 
(d

B
, a

.u
.)

40

20

0

FF
T 

am
pl

it
ud

e 
(d

B
, a

.u
.) 40

20

0

b

d

DC

fr

2f

–2f –f

BW

r r

Figure 5. Relationship between time and frequency domain repre-
sentation before and after demodulation. (a) Sinusoidal input signal
superimposed with noise displayed over time. (b) Same signal as in
(a) represented in the frequency domain. (c) After mixing with the
reference signal (blue trace) and low-pass filtering (red trace), the
signal spectrum up to fBW remains. (d) In the frequency representa-
tion, the frequency-mixing shifts the frequency components by−fr.
The filter then picks out a narrow band of fBW around zero. Note the
component at frequency−fs, which comes fromoffset and 1/f noise
in the input signal. To obtain accurate measurements this compo-
nent has to be suppressed by proper filtering.

main input signal Qin(t) and output signal Qout(t) re-
spectively.
To perfectly reject unwanted parts of the spectrum,
one might think that an ideal filter should have full
transmission for all frequencies below fBW, i.e. the
passband, and zero transmission for all other frequen-
cies, also called the stop band. Unfortunately such
idealized “brick-wall filters” are impossible to realize
since their impulse response extends from−∞ to+∞
in time, which makes them non-causal. As a basic ap-
proximation, we consider the RC filter model, see Fig-
ure 6. This type of filter is easy to implement both in
the analog and the digital domain. The transfer func-
tion of an analog RC filter is well approximated by

H(ω) =
1

1+ iωτ
, (10)

where τ = RC is called the filter time constant with
the resistance R and capacitance C. The blue traces
in Figure 7 (a) and (b) show this transfer function in
Bode plots, 20log|H(2πf)| and arg[H(2πf)] as functions
of log(f).
From the blue curve in Figure 7 (a) we can infer that
the attenuation grows ten times every tenfold fre-
quency increase above f−3dB. This equals 6 dB/octave
(20 dB/decade) corresponding to an amplitude reduc-
tion by a factor of 2 every doubling of the frequency.
The cut-off frequency f−3dB is defined as the frequency
at which the signal power is reduced by −3 dB or one

Qout(ω)Qin(ω)

Stage 1

...

...Stage 2

b

a First-order RC low-pass filter

Higher-order RC low-pass filter

Qin(ω) Qout(ω)

Stage n

Figure 6. (a) First-order RC filter and its transfer function for-
mula. (b) Steeper roll-offs towards higher frequencies are achieved
by stacking multiple RC filters. The transfer function results from a
multiplication of each filter’s transfer function.

half. The amplitude, proportional to the square root of
the power, is reduced by 1/√2 = 0.707 at f−3dB.

For the filter described by Equation 10, the cut-off fre-
quency is f−3dB =1/(2πτ ). FromFigure 7 (b) we see that
the low-pass filter also introduces a frequency depen-
dent phase delay equal to arg[H(ω)].
Compared to the idealized brick-wall filter, the first-
order filter has a fairly poor roll-off behavior. To in-
crease the roll-off steepness it is common to cascade
several of these filters. For every filter added the filter
order is increased by 1. Since the output of one filter
becomes the input to the following one, we can simply
multiply their transfer functions. From Equation 9 we
thus get the following transfer function of an nth order
filter:

Hn(ω) = H1(ω)n =

(
1

1+ iωτ

)n

. (11)

Its attenuation is n times the attenuation of a first-
order filter, with a total roll-off of n × 20 dB/dec. The
frequency responses of a 1st, 2nd, 4th and an 8th order
RC filter are shown in Figure 7 (a) and (b). The higher
the filter order, the closer the amplitude transfer func-
tion gets to a brick-wall filter behavior. At the same
time, the phase delay increases with filter order. For
applications where the phase is used to apply a feed-
back to a system, for example phased-locked loops,
any additional phase delay can limit the stability and
bandwidth of the control loop.

Figure 8 (a) and (b) show theBodeplots for filters of dif-
ferent orders with the same bandwidths f−3dB but dif-
ferent time constants. Table 1 provides the numerical
relationship between corresponding filter properties.
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for instance.
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0.16, 0.10, 0.069, 0.048. (a) Higher-order filters show a steeper roll-
off towards higher frequencies. (b) Higher-order filters have larger
phase delays, which can be detrimental for feedback applications.
(c) Step response as a function of time in units of the time constant
τ 1 of the first-order filter. Though lower-order filters respond more
quickly to changes of the input signal at the beginning, this advan-
tage decreases over time and at some point higher-order filters even
“overtake” lower-order filters, as seen in the inset.

Order Time Roll-off Bandwidth in units of 1/τ Settling times in units of τ

n constant τ dB/oct dB/dec f−3dB fNEP fNEP/f−3dB 63.2% 90% 99% 99.9%

1 1 6 20 0.159 0.250 1.57 1.00 2.30 4.61 6.91
2 1 12 40 0.102 0.125 1.23 2.15 3.89 6.64 9.23
3 1 18 60 0.081 0.094 1.16 3.26 5.32 8.41 11.23
4 1 24 80 0.069 0.078 1.13 4.35 6.68 10.05 13.06
5 1 30 100 0.061 0.069 1.12 5.43 7.99 11.60 14.79
6 1 36 120 0.056 0.062 1.11 6.51 9.27 13.11 16.45
7 1 42 140 0.051 0.057 1.11 7.58 10.53 14.57 18.06
8 1 48 160 0.048 0.053 1.10 8.64 11.77 16.00 19.62

Table 1. Overview of the filter properties of nth order RC filters with the same time constant. Dynamic applications usually take into consideration
f−3dB and settling times, whereas for noise measurements taking into account the correct fNEP is key to achieve accurate results. With the
relations given above one can easily calculate filter time constants for filters of the same bandwidth but different order.
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For noise measurements, it’s often more useful to
specify a filter in terms of its noise equivalent power
bandwidth fNEP, rather than the 3 dB bandwidth f−3dB.
The noise equivalent power bandwidth is the cut-off
frequency of an ideal brick-wall filter that transmits
the same amount of white noise as the filter we wish
to specify. For cascaded RC filters, the conversion fac-
tor between fNEP and f−3dB is listed in Table 1.
After mixing the input signal Vs(t) with the reference
signal

√
2exp (−iωrt), the input signal spectrum is

shifted by the demodulation frequency ωr and be-
comes Vs(ω−ωr). Low-pass filtering further trans-
forms the spectrum through amultiplication by the fil-
ter transfer function Hn(ω). The demodulated signal
Z(t) contains all frequency components around the ref-
erence frequency, weighted by the filter response

Z(ω) = Vs(ω−ωr)Hn(ω). (12)

This equation clearly shows that demodulation be-
haves like a bandpass filter in that it picks out the fre-
quency spectrum centered at fr and extending on each
side by f−3dB. Moreover, it shows that one can recover
the spectrum of the input signal around the demod-
ulation frequency fr by dividing the Fourier transform
of the demodulated signal by the filter transfer func-
tion. This form of spectral analysis is often used by
FFT spectrum analyzers and sometimes referred to as
zoomFFT [12].

Low-pass filter in the time domain

The time domain characteristics of a filter is best vi-
sualized by its step response, as shown in Figure 7 (c)
and Figure 8 (c). These plots correspond to a situation
where the input of the filter is changed in a step-like
fashion from 0 to 1. A certain amount of time will be
neededbefore the filter output settlesat thenewvalue.
In order to measure a signal that has passed through
a filter accurately, the experimentalist must wait for a
settling time long enough before taking the measure-
ment.
Table 1 lists the times to reach 63.2%, 90%, 99% and
99.9% of the final value for filters of different orders
but identical time constant τ . Assume we have a
1 MHz signal and want to use a 4th-order filter with a
bandwidth of 1 kHz around 1 MHz. From the numbers
given in Table 1we can derive that the time constant is
69 μs and the settling time to 1% error is 0.7 ms.

Signal dynamics and demodulation
bandwidth
Setting the demodulation bandwidth is often a trade-
off between time resolutionandSNR. Let’s consider an
amplitudemodulated (AM) inputsignalwithcarrier fre-
quency fc =ωc/2π,

Vs(t) = [1+ h cos(ωmt)] cos(ωct+ φc) (13)
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Figure 9. Amplitude modulated signal: the green trace is the car-
rier input signal (displayed at a lower frequency for clarity). The blue
trace indicates the signal amplitude, which is the envelope of the in-
put signal.

represented in Figure 9 as an example to discuss how
requirements fordifferentexperimentalquestionscan
be met. The signal amplitude R(t) = 1+ h cos(ωmt),
the blue trace in the Figure 9, is modulated at a fre-
quency fm =ωm/2π around the average value 1, where
the modulation index h characterizes the modulation
strength. For this examplewe choose carrier andmod-
ulation frequencies of fc = 2 kHz and fm = 100 Hz, re-
spectively.
Using the complex representation introducedwith Fig-
ure 3, Figure 10 (a) shows the AM signal after mix-
ing. Its modulus |1+ h cos(ωmt)| is time-dependent
but its angle φc is constant. The term cos(ωmt) is the
sumof the two counter-rotating vectors exp(iωmt) and
exp(−iωmt). These two vectors represent the upper
and lower sidebands of the frequency spectrum of an
amplitude modulated signal, as seen in Figure 10 (d).
Figure10 (b) and (c) show thequadrature and in-phase
component, respectively.
Most applications requiremeasuring one of the follow-
ing quantities:

1. the time dependence of the amplitude
R(t) = 1+ h cos(ωmt)

2. the average value of the amplitude ⟨R(t)⟩
3. the modulation index h

In the first situation, we would like the demodulated
signal to follow amplitude changes at a rate fm. This
requires a filter bandwidth significantly larger than fm.
Consider for instance a 4th-order filter with a band-
width of f−3dB = 500 Hz. With this choice, the trans-
mission at fm = 100 Hz (that is 100 Hz away from the
carrier fc) is about 98.5% and the phase delay is about
20◦ as one can calculate fromEquation 11 and Table 1.
In other words, the modulation signal is only slightly
affected by the filter. The demodulated signal is dis-
played as the dashed black line in Figure 10 (b) and (c).
Apart from the desired sideband suppres-
sion/admission and phase delay, the amount of
noise in the measurement is an important criterion
in the choice of a filter. Figure 11 illustrates this
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with an AM signal with relatively strong noise after
demodulation in (a). Panel (b) shows the same signal
after filtering with a cutoff frequency equal to the
modulation frequency. While this filter eliminates
most of the noise, it introduces systematic changes in
the amplitude and phase that need to be corrected to
get accurate results.
For the second set of requirements, frequency compo-
nents corresponding to the sidebands are rejected by
reducing the filter bandwidth to a value smaller than
fm. A 4th-order filter with f−3dB = 20 Hz, dashed cyan
line in Figure 10 (d), suppresses the sidebands by 0.03
or 30 dB. Figure 11 (c) illustrates the effect of such a
strong filter on the measurement.
In the third case, we want to know the modulation in-
dex h but don’t need to resolve the full signal dynam-
ics. This is used, for instance, in Kelvin probe force
microscopy, where h is a measure of the electrostatic
force between a probe and a sample in response to an
alternating voltage at fm. Since the modulation index
is proportional to the amplitude of the sidebands, this
measurement canbeperformedbyapplyingnarrow fil-
ters around the sidebands at fc−fm and fc+fm. There
are two ways to do this: by so-called tandem demodu-
lation or by direct sideband demodulation.
In tandemdemodulation,we firstperformawide-band
demodulation around the center frequency. The re-
sulting signal, typically looks similar to the one in Fig-
ure 11 (a), is then demodulated again at fm. The mod-
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Figure 11. (a) A noisy input signal will produce a noisy demodulated
signal, blue trace. The underlying signal without the noise is plotted
as a black dashed trace. (b) Applying a filter with bandwidth f−3dB =
fm = 100 Hz will eliminate most of the noise but will also affect the
detected signal. (c) Same as (b) but with f−3dB = fm/5 = 20 Hz.

ulation frequency accessible with this method can’t
be larger than themaximumdemodulation bandwidth
of the first lock-in unit. In direct sideband demodula-
tion, the signal is demodulated at fc ± fm in a single
step, and the accessible modulation frequencies are
only limited by the frequency range of the lock-in am-
plifier. Also, direct sideband demodulation works with
a single lock-in amplifier instead of two and is there-
fore usually the preferred choice.

Achieving high SNR

Reducing the filterbandwidthgenerally leads tohigher
SNR at the expense of time resolution. What other
measures can be taken to improve SNR?
If the signal strength cannot be increased, the noise
has to be reduced or avoided as much as possible.
However, noise is always present in analog signals and
arises fromdifferent sources, someofwhichareof fun-
damental origin, for example Johnson-Nyquist (ther-
mal) noise, shot noise and flicker noise, while others
are of technical origin, as for example ground loops,
interference, cross-talk, 50–60 Hz noise or electro-
magnetic pick-up. The magnitude of a random volt-
age noise Vnoise(t) is specified by its standard deviation.
In the frequency domain, noise is characterized by its
power spectral density |vn(ω)|2 in units of V2/Hz, or by
|vn(ω)| in units of V/√Hz.
The qualitative spectrum in Figure 12 shows that dif-
ferent noise sources have different frequency depen-
dencies: while Johnson-Nyquist noise has a flat spec-
trum for all practical frequencies and therefore con-
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Figure 12. Qualitative noise spectrum of a typical experiment. The
measurement frequency should be chosen in a region with small
background, avoiding any discrete peaks coming from technical
sources. In the example, f2 will yield better results than f2 for the
same filter bandwidth, since it is located in a clean white noise re-
gion above the 1/f noise at low frequencies.

tributes to the “white noise”, flicker noise has a 1/f fre-
quency dependence (“pink noise”). If there is some
freedom in the choice ofmodulation frequency, we can
zoom in to a part of the spectrum where the noise
level is lowest. Often higher frequencies where the
spectrum consists of white noise characteristics work
best. Figure 12 illustrates this approach: the amount
of noise inside a filter, indicated by the blue and gray
filled area, is larger for example in the lower frequency
1/f noise region. Hence, the SNR at f2 is higher than at
f1 using the same filter bandwidth, because the noise
density is lower as long as other noise sources, such
as as radio and wireless transmission are avoided.
To give amore quantitative example, let us assumewe
want to measure a sinusoidal signal with amplitude
of 1 μV across a 1 MΩ resistor with a SNR larger than
10. Such a resistor R exhibits a thermal noise with a
power spectral density of v2n = 4kB TR, which amounts

to about
√
v2n = 0.127

√
R nV/√Hz =127 nV/√Hz at T

= 300 K room temperature1. In this example, thermal
noise is identified as the dominant noise source. It is
clearly stronger than the lock-in inputnoiseof typically
less than10nV/√Hz. Wecan thus calculate theSNRas

SNR =
1μV

127nV/
√
Hz ·

√
fNEP

= 10 (14)

By solving this equation for fNEP, we calculate that we
need to select a NEP filter bandwidth of 620 mHz or
less to achieve a SNR of 10. We choose a 4th order fil-
ter. From Table 1 we can calculate the corresponding
cutoff frequency f−3dB = 549mHz, the time constant τ
= 126ms, and the settling time to 1% is 1.26 s.
To further increase the SNRby a factor of 10, wewould
need to decrease the filter bandwidth by a factor of

1Boltzmann constant kB = 1.381×10−23 V2/(Ω Hz K)
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Figure 13. (a) Analog lock-in amplifier: the signal is split into two
paths, mixed with the reference signal, filtered and then converted
todigital. (b) Digital lock-in amplifier: the signal is digitizedand then
multiplied with the reference signal and filtered.

100, because the noise amplitude is proportional to
the square root of the bandwidth. The settling time to
1% then increases to more than 2 minutes. The lock-
in technique can support such longmeasurements be-
cause it is insensitive to DC offset drift in the input
signal. Nonetheless, other sources of drift such as
changes in the DUT resistance, or in amplifier gain,
may affect long measurements. Maintaining stable
conditions and especially constant temperature are
then crucial.

State of the art
Since the early 1930s lock-in amplifiers have come a
long way. Starting from vacuum tubes as basic instru-
ment technology, we note the transition to digital is
well underway but not yet complete. In digital lock-in
amplifiers, the input signal is immediately converted
to the digital domain by an analog-to-digital converter
(ADC)andall subsequent stepsare thencarriedoutnu-
merically by digital signal processing (DSP), as shown
in Figure 13 (b). In contrast, analog lock-in amplifiers
use analog elements like voltage-controlled oscilla-
tors, mixers and simple RC filters for signal process-
ing. There are also hybrid versions [9], as sketched in
Figure 13 (a), which digitize the signals only after the
analog mixing stage before or after filtering.
The transition from analog to digital was fueled by
the availability of ADCs and DACs with ever increas-
ing speed, resolution and linearity. This development
helped to push the frequency range, input noise and
dynamic reserve to new limits. In addition, digital sig-
nal processing ismuch less prone to errors introduced
by a mismatch of signal pathways, to cross-talk and
to drifts, caused for instance by temperature changes.
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Figure 14. Zurich Instruments UHFLI Lock-in amplifier representing the state of the art of lock-in technology. The 600 MHz signal input band-
width as well as the 5 MHz demodulation bandwidth make it by far the fastest lock-in amplifier on the market today. In addition, the 19 inch
wide instrument integrates the greatest amount of functionality, see Figure 16, while providing the most advanced instrument control software
LabOne® (see Figure 15).

This is particularly critical at higher frequencies. But
the biggest advantage of the digital approach is prob-
ably the ability to analyze the signal in multiple ways
simultaneouslywithout lossofSNR.Asmentionedear-
lier, this enables not only better dual-phase demodu-
lation, but also the analysis of several frequency com-
ponents of a signal directly, without the need to cas-
cade multiple instruments with all the accompanying
detrimental effects.
After the transition from analog to digital, another sig-
nificant step of innovation was sparked by the avail-
ability of field programmable gate arrays (FPGA) with
high computing power, abundant memory and speed.
FPGAs are well understood as digital clockworks that
can be flexibly programmed to carry out almost any
desired signal processing task in real time. The natu-
ral extension of the lock-in is to add time domain and
frequency domain analysis before and after demodu-
lation, something that would otherwise be donewith a
separate scope and spectrum analyzer. Furthermore,
a single instrument can contain boxcar averagers to
analyze signals with low duty cycle, PID and PLL con-
trollers for feedback loops and arithmetic units to pro-
cess measurement data in real time. The measure-
ment signals can thenbe transferred to a computer for
further analysis. If an analog interface to another in-
strument is needed,measurement data fromdifferent
functional units are easily converted back to the ana-
log domain using high-resolution DACs.
Themost advanced instrument today regarding speed
and level of integration is Zurich Instruments’ UHFLI
[13], introduced in 2012. Figure 14 shows the instru-
ment front panel. The UHFLI has a signal input band-
width of 600MHzandamaximumdemodulation band-
width of 5 MHz, which makes it by far the fastest lock-
in amplifier on the market today. Despite high speed,
it still provides exceptional input noise performance of
only 4 nV/√Hz and a dynamic reserve of 100 dB. The
high level of integration is illustrated inFigure16show-
ing the main functional components of the UHFLI and
their interconnections. Functionality that used to re-
quire an entire rack of instruments is now housed in a
single instrument no larger than a shoe box.

Clearly, the wealth of functionality indicated in Fig-
ure 16 cannot be controlled and utilized with a few
knobs and buttons on the front panel. Instead, the
UHFLI is entirely controlled from a computer running
LabOne®, an instrument control software using the
latest browser technology that provides a graphical
user interface to any device with a web browser, see
Figure 15. High-level tools such as the Parametric
Sweeper, the Software Trigger, or the PID Advisor, ex-
ploit the available processing power of the host com-
puter for measurement tasks, which improves con-
fidence in the measurement results, and enables a
more efficient workflow. In addition LabOne also of-
fers programming interfaces for LabVIEW®, MATLAB®,
Python and C# to conveniently integrate the measure-
ment instrument into existing experiment control envi-
ronments.

Figure 15. The LabOne® user interface of the UHFLI Lock-in ampli-
fier uses the latest web browser technology. The instrument can be
controlled frommultiple browser sessions on multiple PCs, tablets,
etc. at the same time. Every signal analysis and control tool has a
dedicated tab. Some of the functionality is intuitively displayed in
form of block diagrams.
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