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ABSTRACT
The piezoresistive effect of silicon is often utilized in sen-

sors. Due to the crystalline nature of silicon, the sensitivity of
the piezoresistive effect depends on many things including the
direction and magnitude of the applied stress and the orientation
of the crystallographic plane. A method of modeling the piezore-
sistive effect in silicon and poly crystalline silicon is presented.
This mathematical model includes partial derivatives and linear
algebra to combine basic electrical and mechanical equations to
describe the change in resistivity as a function of stress. An ex-
periment was used to verify the model. The analytical solution
and experimental results agree. The model presented in this pa-
per is adequate to predict the behavior of a piezoresistive sensor
under uniform stress.

NOMENCLATURE

Ei = Electric Field

Ji = Current

ρ = Resistivity

σi = Stress

τi = Shear Stress

R = Electrical Resistance

L = Length

A = Cross Sectional Area

li,mi,ni = Directional Cosines

ε = Strain

πi j = Piezoresistive Coe f f icients

INTRODUCTION
Piezoresistivity is a material property that couples bulk elec-

trical resistivity to mechanical strain [1]. In other words, as a ma-
terial is stretched, compressed, or distorted in any way, the elec-
trical resistivity changes. Almost all materials have this property,
even though in some it is so small that it is virtually undetectable.
However, other materials show a large change in resistivity for a
relatively small strain. One of these materials is silicon. The
piezoresistive effect in silicon makes it a good candidate to use
as a sensor. A sensor element is a device that converts one form
of energy into another [2]. An element made from silicon can
be designed to be a sensor since the piezoresistive property links
strain energy to change in resistance (electrical energy). This
change in resistance can be related to a physical phenomenon
such as displacement, pressure, or force. A mathematical model
of the piezoresistive effect will be presented, which may be used
to design piezoresistive sensors in silicon or polysilicon.

BACKGROUND
In 1856, William Thomson, more commonly known as Lord

Kelvin, first discovered the piezoresistive effect when he noticed
that the electrical resistance of copper and iron wires changed
when subjected to a mechanical strain. This phenomenon be-
came known as piezoresistivity: “piezo” meaning “to push” in
Greek, and “resistivity” from the change in electrical resistance.
In 1954, Charles Smith, working for Bell Laboratories, published
a paper [3] exposing the piezoresistive properties of silicon and
germanium. He set up experiments in order to derive a method of
modeling this effect; from which he derived piezoresistive coeffi-
cients that relate change in resistance to stress. His experimental
setup is illustrated in Figure 1. He also found that silicon and
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germanium are much more sensitive to the piezoresistive effect
than most metals. In the 1960’s, silicon began to be used as a
sensor on thin membranes by diffusing it on areas of the mem-
brane that would experience the most stress in order to measure
pressure. It was also doped on cantilever beams to enable mea-
surement of other phenomena (see Figure 2). Since then, many
sensors have been developed that are based on the piezoresistive
effect of silicon.

Figure 1. Charles Smith’s experimental setup
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Figure 2. Piezoresistive sensor elements doped onto diaphragms and
beams

MODELING PIEZORESISTIVITY ALONG CRYSTAL
AXES

Modeling the piezoresistive effect of silicon requires linking
equations related to the electrical properties of a material with
equations describing the stress or strain and volumetric changes
of a material. Starting with Ohm’s law (E = IR), the electric field
vector of an anisotropic cubic crystal can be derived. It is related
to the current vector by a resistivity tensor [4].

 E1
E2
E3

 =

 ρ1 ρ6 ρ5
ρ6 ρ2 ρ4
ρ5 ρ4 ρ3

 J1
J2
J3

 (1)

The resistivity tensor is symmetric and is therefore made up
of only six components. When the crystal is in an unstressed
state, the resistivity components along the diagonal of the matrix,
which represent the resistivity along the <100> axes of the cubic,
are equal to each other. The other three components are also
equal to each other and are 0.

ρ1 = ρ2 = ρ3 = ρ, ρ4 = ρ5 = ρ6 = 0 (2)

When the cubic is stressed, each component of resistivity
changes. The new resistivity of each component in the resistivity
tensor is


ρ1
ρ2
ρ3
ρ4
ρ5
ρ6

 =


ρ

ρ

ρ

0
0
0

+


∆ρ1
∆ρ2
∆ρ3
∆ρ4
∆ρ5
∆ρ6

 (3)

The link relating change in resistance to stress is the Π matrix.
This is the matrix which Charles Smith worked to define. The ex-
perimental setup in Figure 1 shows how he derived the piezore-
sistive coefficients for silicon and germanium. The change in
resistance is directly related to the stress on the object through
these piezoresistive coefficients by

1
ρ

∆ρi = [πi j] [σ j] (4)

where the stresses relate to the stresses shown in Figure 3. σ1,σ2,
and σ3 are along the axes of the cube and σ4,σ5, and σ6 map
to the shear stresses τ1,τ2, and τ3. With six stress components
and six resistivity components, the π matrix must be a six-by-six
matrix. Therefore, 36 π coefficients are required to populate the
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Figure 3. Stress Cube

matrix. However, for the cubic crystal structure of silicon, the
matrix simplifies to


π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44

 (5)

Only three π coefficients (π11,π12, and π44) are needed. When all
of the values of the components are filled in, equation 4 becomes

1
ρ


∆ρ1
∆ρ2
∆ρ3
∆ρ4
∆ρ5
∆ρ6

 =


π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44




σ1
σ2
σ3
τ1
τ2
τ3

 (6)

As shown in [5], [1], and [4], equations 1, 3, and 6 can now be
combined to obtain

E1 = ρJ1 +ρπ11σ1J1 +ρπ12 (σ2 +σ3)J1 +ρπ44 (J2τ3 + J3τ2)
E2 = ρJ2 +ρπ11σ2J2 +ρπ12 (σ1 +σ3)J2 +ρπ44 (J1τ3 + J3τ1)
E3 = ρJ3 +ρπ11σ3J3 +ρπ12 (σ1 +σ2)J3 +ρπ44 (J1τ2 + J2τ1)

(7)
which describe the electric field potential along the crystal axes.
The first term in each of the equations is the unstressed condition
of the cubic. The next term takes in the effect of the stress along
the axis of the respecting electric field component. The effect of
the other two axial stresses are presented in the third term, and
the last term models how the shear stresses effect the electrical
potential.

MODELING PIEZORESISTIVITY IN ANY DIRECTION
The above equations are used to model the piezoresistive ef-

fect of silicon in the direction of the crystal axes. However, it
is often convenient to be able to model the piezoresistive effect
along other directions as well. Two new π coefficients can be
defined in terms of the original 3 π coefficients and an arbitrary
direction. These two new π coefficients relate the change in re-
sistance to the stress in the longitudinal direction (defined to be
the same direction as the current flow) and the transverse direc-
tion (defined to be perpendicular to the current flow). πl and πt
are

πl = π11 +2(π44 +π12−π11)
(
l2
1m2

1 + l2
1n2

1 +m2
1n2

1
)

πt = π12− (π44 +π12−π11)
(
l2
1 l2

2 +m2
1m2

2 +n2
1n2

2
) (8)

l1,m1, and n1 are directional cosines between the longitudinal
direction of the sample and the cubic axes and l2,m2, and n2 are
the directional cosines between the direction of one component
of the transverse stress and the cubic axes [6].

LONGITUDINAL EXAMPLE OF PIEZORESISTIVITY
A simple example that demonstrates the modeling of the

piezoresistive effect can be seen in the uniaxial stress case. The
setup for the example is shown in Figure 4. The resistance of the
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Figure 4. Tension example

unstressed beam, R, is given by

R =
ρL
A

(9)

Journal of Applied Engineering Mathematics April 2006, Vol.2 3 Copyright © 2005 by EngT503 BYU



where ρ is the bulk resistivity, L signifies length, and A is the
cross sectional area. By implicit differentiation:

δR = δρ

(
L
A

)
+δL

(
ρ

A

)
−δA

(
ρL
A2

)
(10)

Dividing equation 10 by the original resistance equation yields

δR
R

=
δρ

ρ
+

δL
L
− δA

A
(11)

Equation 11 can be approximated as

∆R
R

=
∆ρ

ρ
+

∆L
L
− ∆A

A
(12)

In this form, it is clear from the equation that a fractional change
in resistance, ∆R

R , is influenced by the fractional change in bulk
resistivity, ∆ρ

ρ
, and by volumetric changes, ∆L

L - ∆A
A , of the beam.

Depending on the material, either the bulk resistivity change or
the geometric change can be dominate the change in resistance.
In silicon, the bulk resistivity change in usually the most dom-
inant. Each of the components associated with the volumetric
changes can be written in terms of strain.

∆L
L

= εl ,
∆A
A

= 2εt (13)

where εl denotes the strain along the length of the beam and εt
is the strain across the cross section of the beam. The fractional
change in area, ∆A

A , is equal to the fractional change of the width
plus the fractional change of the height, ∆w

w + ∆h
h , with strains

εw = εh = εt . Using poison’s ratio, ν , to relate εl and εt through
the equation εt =−νεl simplifies equation 12 to

∆R
R

=
∆ρ

ρ
+ εl (1+2ν) (14)

The change in bulk resistivity, ∆ρ

ρ
, gives an even larger contribu-

tion to the change of resistance. As seen above, Charles Smith’s
experiment was set up to relate stress to change in resistivity. He
related these two phenomena through a Π matrix. Using that
relationship as well as equation 8, the fractional change in resis-
tance along the length of the beam becomes

(
∆R
R

)
l
= εl (πlE +1+2ν) (15)

In a similar manner the fractional change in resistance in the
transverse direction can be found to be

(
∆R
R

)
t
= εt (πtE−1) (16)

MODELING PIEZORESISTIVITY IN POLY CRYS-
TALLINE SILICON

Many MEMS devices are made from polysilicon instead of
pure silicon. The π coefficients used in the silicon Π matrix are
no longer valid with polysilicon. Polysilicon can be approxi-
mated as several small single crystalline grains of silicon sepa-
rated by grain boundaries [5]. The larger the grains, the more the
crystalline material acts like single crystalline material. Burns,
[5], estimates the πl , and πt coefficients for polysilicon by aver-
aging equation 8 over all possible orientations and weighing each
value by its probability of occurring. His results give the average
of value of πl and πt in the following two equations.

πl = π11−0.4(π11−π12−π44)
πt = π12 +0.133(π11−π12−π44)

(17)

RESULTS
The above equations were used to model the piezoresistive

effect on pure tension in a beam. The beam was modeled on the
micro level, and was a assumed to be made from n-type polysil-
icon. The original bulk resistance, modulus of elasticity, Pois-
son’s ratio, and π coefficients were approximated from litera-
ture. The results showed a linear decrease in resistance with an
increase in stress. An actual specimen was then fabricated and
tested. A picture of the tensile beams and the force gauge used
to measure stress is shown in Figure 5. Figure 6 shows the re-
sults from two tensile specimens and the analytical solution. The
experimental results are seen to match very well the analytical
prediction.

CONCLUSION
Piezoresistivity is a material property that can be utilized in

sensors. Mathematical modeling of piezoresistivity aids design
of sensors. However, in modeling piezoresistivity, it is important
to know the crystal directions and crystal structure of the device
being modeled. The results show a very close correlation be-
tween experimental results and analytical predictions. The equa-
tions presented above were mainly taken from literature. If more
complex stress situations are required, the author suggests further
research in the referenced material. Finite element modeling may
also be used where complex geometries are involved.
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Figure 4: Test setup to measure the piezoresistive effect under axial tensile
loads.
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Figure 5. SEM picture of a tensile specimen. Courtesy of Rob Messen-
ger

Figure 6. Tension example
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